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SIMPLIFYING PARTIAL DIFFERENTIAL 

EQUATIONS BY FEFBBACK 

r n C T  

Given a partial differential equation, analysts often ask for 

conditions under which the equation takes a simplified form. 

we consider coordinate changes that make the highest order part constant 

coefficient or Lie transformations that reduce the number of variables. 

However. if we view a partial differential equation as an input-output 

system, then the prospect of a simplifying feedback arises. 

For example, 

For systems of nonlinear control ordinary differential equations, much 

research and m y  applications have unfolded concerning the feedback 

equivalence with controllable linear systems. In a sense the well 

understood linear control system is an ideal model that we use for design. 

We consider second order linear partial differential equations with 

variable coefficients and propose for the parallel to the linear control 

system equations due to Kolmogorov. In these equations the second order 

spatial part is constant coefficient and the first order spatial part has 

linearly varying coefficients. We then examine the problem of feedback 

equivalence after introducing an interesting type of feedback. 

Keywords: partial differential equations, partial differential operators, 

feedback, transformat ions, camnis i1  forms. 
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SIMPLIFYING PAliTIAL DIFFERENTIAL 

EQUATIONS BY FEEDBACK 

L.R .  Hunt arid Kamiro Villarreal 

I. Introduction 

We consider partial differential equations of the forms 

n a2u  + C B . ( x )  - aU + C ( x ) u  = f 
n 

j J ax j=1 
(1) - at aU + Ajk(x) 

j.k=l J 

where the coefficients are C” functions and f is the input. Studies of  

canonical coordinates in p.d.e’s involve necessary and sufficient 

conditions that coordinate changes exist for 

the coefficients of the second order terms to constants (see [ G I ,  
[C]. [F]). We shall expand our transformations to include appropriate 

feedback operations and ask for (local) transformations that move (1) and 

(XI ’X2*. - . . xn) to transform 

[CHI, 

( 2 )  to 

au - n n 

j , k=l j.k=l 
’jk Yj - f  
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respectively. where (yl.y 2.....y ) are the new spatial variables, the n 
a and b are constants. and f and denote new inputs. We 

restrict our attention to the case that the matrices (Ajk(x)) i n  ( 1 )  

and (2) and A = (a ) in ( 3 )  and (4) are symmetric, positive 

semidefinite. and have constant rank m. We also require that if B = (b ) 

in (3) and (4) .  then the matrix (A,BA.B2A.. . . .B A) has rank n. 

N 

jk jk 

jk 

j k  
n- 1 

For the problems of interest we need only examine the spatial partial 

differential equations 

n n 

j .k=l jk aYj%k j , k=l 
au - T  

jk ’j - 2 a  a2u + 2 b 

where (Ajk(x)). A = (aJk) and B = (bjk) are as above. We seek 

necessary and sufficient conditions to transform (in some proper sense) 

equation (5) to equation (6). If C(x) = 0 and only nonsingular 

coordinates changes on Rn are allowed. the results are known [HV]. We 

introduce a feedback operation to enrich our transformations. This 

parallels work on moving nonlinear control systems of ordinary differential 

equations to controllable linear systems by feedback transformations [MCl]. 

[Ma]. [B]. [JR]. [SI. [Sl]. [EISM]. [HS]. [KIR]. [SH]. Applications of 

these 0.d.e. theories are numerous [MCl]. [MG?]. [BMHS], [SM2]. [Wl]. [WM]. 

[MI. [MSH]. [TBIC], [Dl]. [E]. [HH]. [FWI]. [KC]. CAE]. [Kl]. [SMPT]. 

The main thrust of this paper is to examine transformations of the 

p.d.e. (5) to the p.d.e. (6). However. we also show that equation (6) is 

to p.d.e.’s as the linear system 

-4- 



= !Y = By + Av dt 

is to 0.d.e. control systems. Here the usual rolls of A and B i n  

linear systems have been interchanged to fit our previously introduced 

notation. and v is an m dimensional control vector. Section 2 of this 

paper contains the linear theory discussion and an introduction to our 

linear feedback. Section 3 involves definitions and conditions under which 

equation (5) transforms to equation (6). 

special case of elliptic equations and examine the possibility of finite 

difference and finite element implementations if there are a finite number 

of point sensors and actuators. 

In section 4 we discuss the 

11. Linear Systems and Feedback 

We develop a parallel viewpoint for linear control p.d.e.'s like ( 6 )  

that classical textbooks take for linear controllable 0.d.e. systems. 

Consider 

= By + Av. 

where Y e Rn. v=(vl. v2, ... .vm). B is nxn. and A is nxm with rank 

m. 

has rank n. then linear feedback v = Ky can be used so that the 

eigenvalues of 

in pairs. 

If the system is controllable (i.e. the matrix (A.BA.B2A,. . . ,Bn-lA) 

. 
y = (B+AK)y are arbitraily placed with complex conjugates 

For the partial differential equation (6) 
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.. 
we can write (see Hormander [HI) 

(9) 
m 

j =1 
z Y2 u + You = T .  

J 

where Y1,Y 2,....Ym are linearly independent constant coefficient first 

order partial differential operators (vector fields) and Yo is a linearly 

r n 
varying vector field [Yo = I: bjgj 

j , k=l 
equation (6) (or (1) if time is included) 

Ko1rnoe;orov twe or Kolmogorov wuation if 

c]. The partial differential 
*k 
is called an equation of 

it satisfies the hypoellipticity 

condition mentioned below. .. 
Hormander indicates that our equation (5) can be written in the form 

B x u +xou + C(x)u = f. 
j=1 J 

1 ,  X2. . . . ,  X being where Xo. X1, 5. .... X are vector fields with X m m 

linearly independent. He then derives necessary and sufficient conditions 

that equation (10) be hvpoelliptic (i.e. C" right hand side f implies 

C" solution). For equation (6) these conditions for hypoellipticity is 

that the matrix (A.BA.B2A.. ... BnqlA) has rank n. 

Our problem of t-ransformipg equation (5) tc equation ( 6 )  can be 

interpreted in terms of transforming (10) to (9) ,  under the proper 

assumptions of hypoellipticity for all equations. 
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First we restrict our attention to the linear system (6). 

derive canonical forms where the transformations considered involve 

nonsingular linear coordinate changes on IRn and appropriate linear 

feedback. Our linear feedback takes the form 

We want to 

m 

j=1 

- 
f = 2 k.yY.u. 

J J  

where each k is lxn matrix of real constants. This means we can 
j 

feedback a sum of terms involving a linear combination of y variables 

times a vector field applied to the solution u. Each Y must be one of 
j 

the vector fields forming the principal part of the operator. This type of 

feedback does not disturb the principal symbol or the hypoelliptic 

assumption. We prove that such a feedback can arbitrarily place the 

eigenvalues of the B matrix in (6). An example is provided after the 

proof. 

Theorem 2.1. Consider the partial differential equation (6) 

which can also be described by (9) 

I 

m 

j=1 
B Y 2 u + Y u = T .  j 0 

Assume that the matrix (A.BA.B2A....,Bn-1A) has rank n. where A = (aj,) 

and B = (b ). Then the eigenvalues of the B matrix can be arbitrarily 
jk 

placed (with complex eigenvalues in conjugate pairs) by linear feedback. 

Proof. We assume that the corresponding linear ordinary differential 

equation control system ( 8 )  

y = By + AV 
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has Kronecker indices 

form. In these same coordinates B takes the form 

K~ 2 K~ 2 . . - )  K and is in controllable canonical m 

. 

a 
axK 

’ dmi a~ 
1 1 a x K 2  * i 

+ -, a m- 1 

i=l K 

-+ - e.. 

m 

, Y  = m 
a a and Y1 = -  a 9 ‘2 = ‘21 axK 

axK 

where dzl.*-*. dml * * e ,  d are real constants. m ,  m-1 

Suppose we have an arbitrary nth degree polynomial s +a s n-1 + ...+ 
1 

a having real coefficients. For n 
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m 

j=1 

- 
f = 2 k.yY .U 

J J  

we choose kl.s ..... k to drive B to rational canonical form having 

last row [-a -a * * *  -al]. The desired eigenvalue placement is now 

m 

n n-1 

accomplished. 0 

Given a Kolmogorov equation (6) we have the associated controllable 

linear system y = By + Av. The Kronecker indices K ~ , K ~ ,  .... K of m 

= By + Av give us the Kolmonorov indices [HV]. denoted by e,. e2, . . . , 
em of the Kolmogorov equation. 

using the matrices A and B. We have el 2 e2 2 *-• 2 em and e ,  + L? + 

* e *  + em = n. 

Example 2.1 

equation in IR' 

These can be computed directly from (6) 

2 

Consider the hypoelliptic control partial differential 

2 2 
au - T  jk 'j - B a  + B b 

j.k=l jk ayjaYk j , k=l 

where the symmetric. positive semidefinite matrix A = (a ) has rank 1. 
jk 

We want to use coordinate changes and linear feedback so that (13) becomes 

Here y1 and y2 are our new coordinates and f our new input. 

The associated differential equation 
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w a s  shown by Kolmogorov [K2] and Weber [W2] to have fundamental solution 

2J-T - 2-l( t-T)(y2 '+y2)} 
(16) T(t--T) ( t--7) 

The vector field version of (13) is 
- 

Y2 + Yo= f. (17) 1 

We assume that coordinate changes have been made so that 

Yo = rp2 !pl] k;], where the characteristic polynomial of B is s2 + 

Y1 = 

P1S + P,. 

+ Ply2 $1 to both sides of Adding [P2 a 

differential equation (14) 

The diffusion equation (15) of Fokker-Planck type with zero right hand 

side is satisfied by a probability density of a system with 2 degrees of 
*. 

freedom. The hypoellipticity results of Hormander are used by Elliott 

[El], [E21 to prove smoothness for certain probability density functions. 

We consider the effect of feedback of the form ( 1 1 )  on the partial 

differential equation (6). Following the arguments in [HI we take Fourier 

transforms with E = (El,e2, ....E ) being the transform variables. Then 

(with u and T denoting the respective transforms of u and f) we f i n d  

n 
h 

- A 
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This is a first order partial differential equation that can be solved by 

the method of characteristics for given noncharacteristic initial 

conditions. The characteristic curves are determined by (B '  denotes B 

transpose) 

h 

and u must satisfy 

A h 

Here T denotes the parameter along the characteristic curves, 

Hence the linear feedback in which the B matrix is altered simply 
h 

changes the characteristic curves used in solving for u. On examining 

Hormander's work [HI, there is a quadratic 

matrix is the controllability matrix of the associated linear system y = 

.. 
form whose positive definite 

By + Av. 

111. Simplifying Coefficients 

We now study the problem of moving the partial differential equation 

(5 )  

au 

j 

n n 
+ 2 B.(x) ax + C(x)u = f 

j , k=l 2 Ajk(X) ax j aX, j=1 J 

to the hypoelliptic (rank (A.BA,B"A.. . . .B"-'A)=n) Kolmogorov equation ( S j  
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n n a u -  + 2 bjk yj a y k -  - f .  
j.k=l 

2 
j.k=l 

Again the matrices A = (ajk) and ( A .  (x)) are assumed to be symmetric. 

positive semidefinite, and have constant rank m. In Hormander's vector 

field notation we must transform (10) 

.. Jk 

m z  
2 x.u +xou + C(x)u = f .  

j=1 J 

to the hypoelliptic equation (9) 

m 
I: Y2 u + You = T .  
j=1 J 

where both sets {X1.X 2.....Xm) and {Y1.Y 2,....Ym} are linearly 

independent. 

A few necessary definitions are in order. 

If X and Y are C" vector fields on Rn, then the Lie bracket of X and Y is 

ay ax 
ax ax where - and - are Jacobian matrices, x being the variable for IR". 

Successive Lie brackets such as [X,[X,Y] 1. [Y, [X.Y] 1. [ [X, [X.Y] 
etc. can be taken. A standard notation is 

1 Dyl * 
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(adoX.Y) = Y 

; -  

.. . . 

(adJX.Y) = [X. (adJ-lX.Y)] 

We let <e.*> denote the dual product of one forms and vector fields. 
a, 

Given a C function h on Rn we define the Lie derivative of h with respect 

to the vector field X as 

Successive Lie derivatives are 
0 

h h  = h 

2 

Moreover, the derivative of the one form dh with respect to X is 

where * denotes transpose. 
The three types of Lie derivatives satisfy the formula 

( 18) +<dh.Y> = <$(dh).Y> - <dh,[X.Y]>. 

We begin our discussion with an example. 

Ehnmle 3.1. Consider the partial differential equation 



+ 2  a2u 

ax2 ax2 2 + - 

m d X - x  1- 

+ - + -  ax, au 
ax2 au + {[xl - %2]2+ [x2 - $1 + x3 

- 
+ [x2-q3k 

1 

(19) 

x3 

3 

1 - -  

+ (-3 +sin[x2 - $1 + %[[XI - + [x2 - %I3]} s2 

We write this in a vector field notation 

*. 

xo = 

yields 

2 
x1 + Xo = ?, where 

The coordinate change 

2 

2 

s1 = x1 

A. s2 = x2 

s3 = "3 



where 

i.e. we have the partial differential equation 

gives 

(25) 

The coordinate change 

Y 1  = s1 

y2 = s2 + s2 
1 

2 + 2sl [s2 + s?] 
y3 = s3 + sin s 

= p  
Y;+ [Y2T$+ [cos [YfY;]] [Y3+2YlY2]+2YpYlY3 

Thus we obtain the partial differential equation 

a2u all all 
(27) g + y 2 -  + Y3-+ 

*l ay2 

[Y;+ [Y2-.;]”. [cos [y2-y;]] [Y3+2YlY2]+2Y$+2YlY3]~ = K 
- 

au 1 by 7 we have ay, term involving 

-15- 
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We compute interesting Lie brackets of the vector fields So and S1 

from equation (22). The Lie brackets 

span lR3 near the origin. Moreover 

[[Sos[So,S,]].Sl] E 0. [[So,S,].Sl] 0 and 

0 

2 cos s 

6s2 

This last Lie bracket is in the span of SI and [ S o . S , ] .  

Similar Lie bracket relations hold if we compute in the original 

coordinates since Lie brackets are preserved under coordinate 

x1.x2,x3 

trans f orma t ions. 

We examine equation (10) 

I: x u +xou + C(x)u = f, 
j=1 J 

and replace f - C(x)u by 1: to obtain 
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m z  
H x.u +x u = F, 

j=1 J o  

Taking equation (10) to the Kolmogorov equation (9) is now identical to 

moving equation (29) to equation (9). 

Definition 3 .1 .  

differential equation (29) consists of 

A feedback transformation on the second order partial 

i) nonsingular coordinate changes on Rn(taking the origin to 

the origin) 

m 
ii) replacing f - 2 a.(x)X.u by T .  where the a . ( x )  are 

j=1 J J  J 

smooth functions 

We remark that ii) allows the feedback of linear combinations of 

vector fields X1, X2.....Xm applied to u. The principal symbol and 

hypoellipticity of equation (29) are invariant under a feedback 

transformation. 

Definition 3.2. 

form (10) (or (29)) are feedback ecluivalent if there is a feedback 

transformation taking one to  the other. 

Two second order partial differential equations of the 

For our hypoelliptic Kolmogorov equation (9) we assume Kolmogorov 

indices el > e2 > ... > em. With respect to equation (29) we define the 

following sets of vector fields. Let 

w = {X1. [Xo.X1]. . . . . (adcl-lXo,X1) .X2, [Xo.X2], . . . , 

(adez-1Xo.X2). - . . .Xm. [Xo.Xm]. . . . , (ad m- 1 e 
Xo.Xm)}, 

wi = {~~.~x~,x,l.. . . .(d i-1 Xo,~l~,X2.r~0,~2j,. . . .(adi-1Xo.X2), 
. . . .Xm. [Xo,Xm], . . . , (ad i-1 Xo,Xm)}. k1.2.. . . .tl-1, 

wo = ( 0 ) .  
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We now state and prove our main result and remark that our  feedback 

equivalence is local (in a neighborhood of the origin). 

Theorem 3 . 1 .  The linear second order partial differential equation (29) 

N 
m z  
H x.u +xou = f, 

j=1 J 

with X (0 )  = 0. is feedback 

differential equation (9) 

0 equivalent to the Kolmogorov partial 

m .__ 

2 Y ? u + Y u = f ,  J 0 j=1 

having Kolmogorov indices e ,  2 t2 2 ... 2 em if and only if 

1)  the vector fields in W are linearly independent and span 

W. 1 = span WinW. i=1.2.....k!l-1. 

for each i=1,2.....4?l-1, the Lie bracket of any two vector fields 

in Wi is a linear combination of vector fields in W 

and 

2) 

i-1- 

Proof. The proof for a general m is a straightforward generalization of 

the proof for m = 2. so we consider this case only. Then 

w = {xl. [xO.xl]. . - . . (ade'-lXo.X1) .X2. [Xo.X2], . . . , (adez-1Xo,X2)} 

and we set k = 4 - e, .  We begin by assuming conditions 1)  and 2). 1 4  

We first apply a nonsingular change of coordinates that i s  standard 

for transformation theory of nonlinear ordinary differential equations 



control systems [JR].[HSM].[SH].[K3]. 

. ... 

..: 

Solve in order the system of ordinary differential equations with the 

initial conditions indicated: 

= (ade'-lXo.Xl), ~(0.0,. . . .O)  = 0 
dx - 
ds 1 
dx 
ds 
- = (adel-%o.xl). X(Sl'0.O.. .. .O)  = x(sl) 
2 

e2-1 
'k) 0.0 ..... 0 )  = X(Sl,S 2. . . . *  'k * 

= (ad Xo.X1). x(sl.s2.. . . , dx 
dsk+ 1 
dx 
dsk+2 
dx 

dsk+3 
dx 
dsk+4 

- 

'k+l) 

"k+2) 

"k+3) 

- = (ade2-lxo.Iy 9 X(Sl .S2' - - . , sk+l .o,o. . . -10) = x( SI, S2'. . . , 

= (ade"-+osX1) I X(Sl 'S2' - . . . sk+2'o.o, . . . .O )  = x( sl, S2'. . . 

= (ade'-2Xo*Iy * X(Sl.S2.. . - , sk+3'o,o. f - . , O )  = X(Sl, S2'. . . 

- 

- 

X(Sl IS2' - - - *sn-2.0.0.) = X(Sl.S2'. . . . s  = X1' dx 
dsn- I 
dx - = 3' X(Sl.S2. - - - . s  .O) = X(Sl.S2,. . . . s  ) dsn n- 1 n- 1 

) n-2 
- 

Since the set W of vector fields spans Rn, we can locally invert to 

determine our new coordinates s1,s2.. . . , s for Rn. 
n 

We define manifolds 

s, = {s = (S1'S2' .... sn) E IR n :si = 0. C + 1 I i i n 

and note that 
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a -- - a , (ade"-% .X ) I  = - I %+4 ask+4 O %+3 ask+3 ' 
.... (ad"-% 

a - -  (ade2-lX X ) I  = - - as * - - .  k+ 1 
a , (ade2-lX X ) I  

O' 'k+2 ask+2 O'  'k+l 

From assumption 1 )  on W and our choice of coordinates as noted in 

(30) and (32) we obtain 

xol 
x02 

0 

'Ok 

'Ok+l 

'Ok+2 

'Ok+3 
0 . 
0 

(On-3 

(on-2 

hl-1 
r 

'on 

. 

I 

'k+4 + 'Ok+2( 

'k+5 + 'Ok+3(') 

. 
I 

I 

Here Xol(s). X (s) ..... Xok l(s) are not linear in s2.s3. . . . .  s 02 - 
x~~(s)~x~~+~(s)...-.X~(s) are not linear in 

s2,s3.. . - .sk+l.sk+3.sk+4.....sn. 
simply considering the linear part of Xo in the s coordinates. 

and 
I n' I 

Equation (33) can also be derived by 

-20- 
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From assumption 2) 

ax [X,,X2] = - = 0 
asn 

a imply X1 = - 
asn-l asn-l 
a - -  - This together with 

Since the Lie brackets of vector fields in 

are in and (at the origin) 

I 

we find that Xol(s), X 

s2 s s s2 in their formal power series expansion about 0. 

(s) ...., X, - 2 ( s )  in (33) have no terms containing 02 

n-1’ n-1 n. n 
Since the Lie brackets of vector fields in 

-2 1 -- 



. . .  . . .  _ .  

are in 

(ad2Xo.X2) 

w2 = X1. [Xo,Xl],~.[X,.X2]} and (at the origin) 

a2xo 

[(ad2Xo,X1) .X2] = 
asn-3asn 

I 

w e  find that X (s). X (s),....X~-~ (s) have no terms containing 01 02 

-22- 



s2 s s s s  s s s2 s s in their formal power 

series expansions about 0. 

n-3' n-3 n-2' n-3 n-1' n-3 n* n-2' Sn-2sn-1* n-2 n 

Continuing in this manner we f i n d  that the vector field X from (33) 0 
* I  

becomes (with the definitions of Xo being obvious) 
I ,  

(34) xo = 

.. 

. 

where the c's are constants . 

Because we can work backwards from this point in the proof, we have 

that Xo can be represented as in equation (34) and X - -, a 
1 - aSn-1 

- -  - a i f  and only if conditions 1) and 2) in the statement of the 
'2 asn-2 

theorem hold. 

Next we define the desired y coordinates. Let 

-23- 
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y2 = 5 y1 = <dy 
0 

X ) 
1 9  o 

= <dy X ) 2’ 0 

(35)  

. 

Yn = h0Yn-1= <d~n-1”0> 

It is shown in [HSM] that this coordinate change is nonsingular. 

The result of this coordinate change on the vector field Xo is 

a +  a 
+ bo yel aye, 

+ y3 ay, %,-l 
+...+ y - 5  a a 

y2 ay, 

a ye1+2 a + ye1+3 a a + “xo Yn - ayn- 
+ yn ayn-1 + ... 

%? 1 +1 *e1+2 

From the form of X in (33) and 
0 

coordinates (35). we must have 

(34) and the definition of the y 

-24- 



(37) 

<dye .X1> = <dye . 
1 1 

0 
0 . 

1 

> = 1. 

= 0 .  i # e,.n 

> = 1. 

To see this we show the terms from (33) and (35) involving only the 

pertinent higher subscripted linear si (and we let c denote appropriate 

constants from (34) and c can change as needed): 

Y1 = s1 

y2 = h o y l  = s2+ . . .  

y3 = h y2 = s +.. .  3 0 

-25- 



. .  

0 
0 ana 
0 

6 
-0, 
1 

. . 
Yn = h0'n-1 = s n +... . 

Hence in the y coordinates X1 

... = s + dsn +... n- 1 

and X become 2 

3eSpeCtiVely. We assume that equation (29) is now in our y coordinates 

Replacing 

in (29) and letting Yo be the vector field defined by (36)  (with 

omitted , we have equation (9) a 1 au 
and Lx Yn 0 

rn 
B Y ? u + Y u = T .  

J 0 j=1 
0 

-26- 
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. -. 

We remark that Theorem 3.1 is an application to partial differential 

equations of multi-input extensions of the work of Brockett [B] on 

nonlinear control systems of ordinary differential equations. 

XV Other Considerations 

Suppose that our hypoelliptic partial differential equation (5) 
n n 

a2u + B B.(x) + C(x)u = f 
a x j d s  j=1 J j 

' Ajk(x) 
j , k=l 

is elliptic with (A (x)) being positive definite. Referring to the 

notation used in Theorem 3.1 

2,,....Xn . w =  x x 
we can use feedback to eliminate all first order derivatives (as well as 

jk 
m=n. 8 ,  = t2 - - ... = 8 = 1. and n 

If the hypotheses of that theorem are assumed, then } { 

C(x)u). Hence we obtain a second order constant coefficient equation 

involving no first order or constant terms. 

We have considered the possible feedback of first order spatial 

derivatives of the solution in the directions of the vector fields whose 

squares contain the principal part of the operator. If time t is added 

as in equation (4). then we could also consider the possible feedback of 

.the first order time derivative of u to change damping properties. 

In practical applications. a physical system modeled by a partial 

differential equation (or system of partial differential equations) has 

sensor and control actuators that act at a finite number of points on the 

system. This leads to the application of finite element (or finite 

difference) methods for control, as is well noted in the literature. 

Perhaps simplifying the partial differential equations as in this paper can 

lead to an easier finite element approach. 

-27- 



A recent paper by Juang and Horta [JH] on the control of a cantilever 

beam uses a finite element method so that a finite number of shape 

functions are to be controlled. Interestingly, strain gauges are used as 

sensors. and this information is fed back in the control action. The 

strain gauges are essentially applied to allow for computations of second 

order spatial derivatives. Since the beam equation is fourth order. this 

feedback does not disrupt the principal symbol of the partial differential 

equation. 

We have considered second order partial differential equations. but 

higher even ordered equations are of interest since the hypoellipticity 

theory has moved in that direction. 
1. 

Hormder [HI shows that the loss of hypoellipticity can lead to 

discontinuous solutions by a simple application of the Frobenius theorem. 

The book on nonlinear elastic deformations by Ogden [O] refers to papers by 

Knowles and Sternberg [KSl]. CKS2) in which the loss of ellipticity implies 

the emergence of discontinuous solutions. 

compare these mathematical and physical phenomena. particularly from a 

geometric viewpoint. 
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